
Continuous Delivery of Micro Applications
with Jenkins, Docker & Kubernetes at Apollo

Ulrich Häberlein

Team Manager Backend Systems

Apollo-Optik Holding GmbH & Co KG

Michael Steinfurth

Linux / Unix Consultant & Trainer

B1 Systems GmbH

2

Introducing B1 Systems

● founded in 2004
● operating both nationally & internationally
● about 100 employees
● vendor-independent (hardware & software)
● focus:

● consulting
● support
● development
● training
● operations
● solutions

● offices in Rockolding, Berlin, Cologne & Dresden

3

Areas of expertise

RHEL

Linux Distributions

Systems Management

Monitoring

NAGIOS

ICINGA

Configuration
Management

PUPPET

SALT

CHEF
ANSIBLE

RED HAT
SATELLITE

SPACEWALK

SUSE MANAGER

SLES

DEBIAN

UBUNTUCloud Computing

MIRANTIS OS

SUSE OS CLOUD
RED HAT

OSP

OPENSTACK

CEPH

Container &
Virtualization

JENKINS
OBS

Packaging &
Automation

XENKUBERNETES

KVMDOCKER

4

Introducing Apollo

● Germany’s largest optic retailer
● founded in 1972
● more than 800 stores in Germany
● more than 100 stores in Austria

● part of grandvision, a global leader in optical retail
● more than 6516 stores in 40+ countries
● more than 31000 employees
● more than 15 million spectacles

5

Business Case

6

Business case

7

Status quo

● legacy business platform with multiple databases
● 900 stores
● flat file interfaces provided by the POS database
● nightly batch processing of orders and master data updates
● centralized SAP business platform operated by GrandVision
● container-based middleware

8

Why run middleware with micro applications
1/2

● agile development
● fast and changeable business processes
● easy to scale and expand
● continuous, automatic updates
● standardized test management

9

Why run middleware with micro applications
2/2

● guaranteed deployment quality
● high availability
● OS version independent
● configuration as code
● easy auditing with subversion

10

Workflow

11

Workflow

12

Jenkins processing loop

1) Java applications are developed and committed to SVN

2) Jenkins notices changes in SVN, handles the build job

3) maven → build jobs including dependency handling an testing

4) handover to micro app job

● developer work indepently no operation needed
● avg. job build duration: ~2 minutes (+initial cron offset)

13

Workflow

14

Build jenkins micro app container

1) package app into a generic container

2) populate configuration files

3) build Docker image

4) store meta information in Dockerfile (service ↔ ports)

5) push to registry

● completly automated
● avg. job build duration: ~1 minute

15

Workflow

16

Jenkins deployment

1) job handover

2) download image information from Registry (tag)

3) create meta information based on data from deployment NFS and
Dockerfile

4) create NFS structure

5) adjust software state file (configuation NFS)

6) proceed with deployment job (direct deployment on devel stage)

● average job duration: 7 seconds

17

Example: deployment of the development stage

● Dockerfile labels + configuration information = YAML

→ Image-TAG and replication count given in central NFS configuration
file

● direct deployment on Kubernetes platform for each micro application
pod

● job is done by Jenkins slave
● average duration: 12 seconds

18

Deployment YAML (example)

apiVersion: v1
kind: Deployment
metadata:
 name: testmicroapplication-deployment
spec:
 replicas: 1
 strategy:
 type: RollingUpdate
 template:
 spec:
 restartPolicy: Always
 containers:
 - name: testmicroapplication
 image: registry/apps/testmicroapplication:B123
 env:

19

Test staging

● software state file for development stage in svn repository

→ container name & version, min. & max. frequency, downtime

value
● Jenkins job copies state file to test staging SVN repository

→ automatic discovery and restore check of all running pods

(app containers)

example state file:

testmicroapplication:B123:1:1:1
integration-sample:B42:2:3:1

20

Special temporary setup

● we broke the staging concept during development phase by

doing this
● applications deployed immediately after testing and development

→ faster development progress, since feature development and
bugfixing happen simultaneously

● total run time from commit to deploy: around 7 minutes

21

Infrastructure

22

Host systems

● VMware virtual machines with SLES 12 SP2
● 3 VLANs for each staging area, each /16
● +1 VLAN cluster service IP address range
● one exclusive shared NFS volume for all hosts of one stage
● SUSE Manager deployment
● standardized systems → new systems configured and integrated

in less than five minutes

23

Kubernetes

● virtual network using Flanneld
● Kubernetes packages provided with given SUSE Manager
● started at version 1.3 , now at 1.5
● repos synced from Open Build Service (master & worker)
● combined master and worker usage per node

→ higher availability with easy scalability
● Docker container backend
● outsourcing of infrastructural dependencies (avoid chicken-or-egg question)

→ components were not run as infrastructure pods themselves

→ separate registry, etcd-cluster

24

Infrastructure

25

Infrastructure components

● Registry, Jenkins, Maven → higher availability through

containerization
● reverse proxy with dynamic configuration for vhosts from

Kubernetes services
● almost all components are build and deployed with Jenkins

26

Etcd cluster

● etcd: separate cluster
● nodes spread on three

data centers (2 + 1 arbiter)

27

Used Kubernetes features

● using rolling updates in replica sets via Kubernetes deployment entities

→ no application downtime
● use of the Kubernetes proxy with service entities to distribute

network load on multiple application container

→ Iptables distributes traffic regardless of the incoming IP

address
● horizontal pod autoscaler – (experimental status)

→ configurable scaling during times of performance bottlenecks

28

Logging

● logging prepared for ELK stack
● the stack in Kubernetes with distributed storage
● fluentd to capture container logs from Kubernetes host
● applications write log files themselves
● ongoing development of the applications for ELK stack

connectivity

29

Service monitoring

● using given Nagios for basic system/service monitoring
● monitored:

● Kubernetes daemons
● Flannel, etcd
● Docker (storage-driver btrfs free space)
● Shared storage NFS free space

30

Performance graphing (planned)

● performance graphing for each cluster
● nodes and containers
● used time series data provided by heapster
● grafana + influxdb as backend on each cluster

31

Observations & lessons learned

32

Observations

● infrastructure faster than expected
● on peak load we are spreading the work of the Jenkins jobs

→ done by dynamically generated, temporary, Jenkins slaves

running on the development Kubernetes platform itself
● environment very stable and pretty much self-healing

33

Lessons learned

● make etcd highly available without chicken-or-egg problem
● ended at arbiter 3 DC spreaded cluster

● updating cluster of Rabbitmq message broker requires a lot of

attention and manual interaction (Erlang version)

34

Thank you!

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

